Research Publications

Research Articles in International Journals

 

  1. H. and F. Rendl. An Infeasible Active Set Method with Combinatorial Line Search for Convex Quadratic Problems with Bound Constraints. Journal of Global Optimization, Earlier version.
  2. H. and M. F. Anjos. A Semidefinite Optimization Approach to Space-Free Multi-Row Facility Layout. European Journal of Operational Research, accepted. Earlier version.
  3. H. The Checkpoint Ordering Problem. Optimization, 66(10):1699-1712, 2017. Earlier version.
  4. A. Fischer and H. The Traveling Salesman Problem on Grids with Forbidden Neighborhoods. Journal of Combinatorial Optimization, 34(3):891-915, 2017. Only view version. Earlier version.
  5. H. New semidefinite programming relaxations for the Linear Ordering and the Traveling Salesman Problem. Discrete Applied Mathematics, 217(1):19 - 39, 2017. Earlier version.
  6. H. and F. Rendl. A Feasible Active Set Method for Strictly Convex Problems with Simple Bounds. SIAM Journal on Optimization,  25(3):1633–1659, 2015. Earlier version.
  7. H. and M. F. Anjos. A semidefinite optimization-based approach for global optimization of multi-row facility layout. European Journal of Operational Research, 245(1):46-61, 2015. Earlier version.
  8. H. A Semidefinite Opimization Approach to the Target Visitation Problem. Opimization Letters, 9(8):1703-1727, 2015. Earlier version.
  9. H. Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. International Journal of Production Research, 52(5):1257-1268, 2014. Earlier version
  10. M. Chimani and H. Multi-Level Verticality Optimization: Concept, Strategies, and Drawing Scheme. Journal of Graph Algorithms and Applications,  17(3):329-362, 2013. Earlier version.
  11. M. Chimani and H. Exact Approaches to Multi-Level Vertical Orderings. INFORMS Journal on Computing, 25(4),  pp. 611-624, 2013. Earlier version.
  12. H. and F. Rendl. A computational study and survey of methods for the single-row facility layout problem. Computational Optimization and Applications, 55(1):1-20, 2013. Earlier version.
  13. H. and F. Rendl. Semidefinite Relaxations of Ordering Problems. Mathematical Programming, 140(1):77-97, 2013. Earlier version.
  14. M. Chimani, H. , M. Jünger and P. Mutzel. An SDP approach to multi-level crossing minimization. Journal of Experimental Algorithmics, 17(3), Article 3.3, 2012. Earlier proceedings version.

  

 

Research Articles in Refereed Conference Proceedings

 

  1. M. Firstein, A. Fischer and H. Closed Almost Knight’s Tours on 2D and 3D Chessboards. Operations Research Proceedings 2017, 2017, accepted. Earlier version. 
  2. A. Fischer, H. and A. Jellen. The Traveling Salesperson Problem with Forbidden Neighborhoods on Regular 3D Grids. Operations Research Proceedings 2017, 2017, accepted. Earlier version. 
  3. H. and K. Maier. The Multiple Checkpoint Ordering Problem. Operations Research Proceedings 2017, 2017, accepted. Earlier version.
  4. H., K. Maier, J. Pöcher and C. Truden. On a New Modelling Approach for Circular Layouts and its Practical Advantages. Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM2017), 2017.
  5. H. and C. Truden. A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows.  INFORMS Transportation Science and Logistics Conference 2017, 2017. Earlier version.
  6. H., A. Rendl and C. Truden. On the Slot Optimization Problem in On-Line Vehicle Routing.  Transportation Research Procedia of EWGT 2017, 2017, accepted. Earlier version.
  7. M. Aschinger, S. Applebee, A. Bucur, H. Edmonds, H. and K. Maier. New Constraints and Features for the University Course Timetabling Problem. Operations Research Proceedings 2016, 2016, accepted. Earlier version.
  8. H., K. Maier, J. Pöcher, A. Rendl and C. Truden. Solving an On-line Capacitated Vehicle Routing Problem with Structured Time Windows. Operations Research Proceedings 2016, 2016, accepted. Earlier version.
  9. A. Fischer, F. Fischer and H. A New Exact Approach to the Space-Free Double Row Layout Problem. Operations Research Proceedings 2015, pp. 125 – 130, 2017. 
  10. M.F. Anjos, A. Fischer and HSolution Approaches for the Double-Row Equidistant Facility Layout Problem. Operations Research Proceedings 2014, pp. 17-23, 2016.
  11. H. and M. F. Anjos. An Exact Approach for the Combined Cell Layout Problem. Operations Research Proceedings 2012, pp. 275-281, 2013.
  12. H. A Semidefinite Optimization Approach to the Directed Circular Facility Layout Problem, Proceedings of the 7th IFAC Conference on Manufacturing Modelling, Management, and Control, pp. 2033-2038, 2013. Online version.
  13. M. Chimani, H. , M. Jünger and P. Mutzel. An SDP approach to multi-level crossing minimization. Proceedings of Algorithm Engineering & Experiments [ALENEX’2011], 2011. Online version.

 

 

Book Chapters and Lecture Notes

 

  1. H. and R. Neck. An algorithmic equilibrium solution for n- person dynamic Stackelberg difference games with open-loop information pattern. In: H. Dawid et al.: Computational Methods in Economic Dynamics, Springer Publishers,  pp 197-214, 2010.

 

 

Preprints and Work in Progress

 

    1. H., K. Maier and M. F. Anjos. An Exact Approach for the Combined Cell Layout Problem.
    2. M. F. Anjos, A. Fischer and H. Solution Approaches for Equidistant Double- and Multi-Row Facility Layout Problems. Earlier version.
    3. H., K. Maier, J. Pöcher, A. Rendl and C. Truden. Solving an On-line Capacitated Vehicle Routing Problem with Structured Time Windows. Earlier version.
    4. H.,  F. Rendl and J. Judice. A recursive semi-smooth Newton method for linear complementarity problems. Earlier version.
    5. P.A. Bucur and H. A Reinforcement Learning Approach for the Dynamic Container Relocation Problem. Earlier version.
    6. H. and C. Truden. Efficient and Easy-to-Implement Mixed-Integer Linear Programs for the Traveling Salesperson Problem with Time Windows. Earlier version.

 

 

 

Technical Reports

 

  1. H. A Semidefinite Optimization Approach for the Parallel Ordering Problem.
  2. H. Differential Games: Egoism, Cooperation and Altruism.
 
 

PhD and Master Theses

 

  1. H. Semidefinite Optimization Approaches to Applications in Facility Layout and Logistics. PhD Thesis Economics, 2014. Online version.
  2. H. Semidefinite Approaches to Ordering Problems. PhD Thesis Mathematics, 2012. Online version.
  3. HThe Prices of Anarchy, Information and Cooperation. Master Thesis Business and Law, 2012. Online version.
  4. H. Algorithms for Convex Quadratic Programming. Master Thesis Mathematics, 2009. Online version.
  5. H. Discrete-Time Dynamic Noncooperative Game Theory. Master Thesis Economics, 2008. Online version.