Research Publications

Research Articles in International Journals


  1. H. and F. Rendl. A Feasible Active Set Method for Strictly Convex Problems with Simple Bounds. SIAM Journal on Optimization, 2015, accepted. Earlier version.
  2. H. and M. F. Anjos. A semidefinite optimization-based approach for global optimization of multi-row facility layout. European Journal of Operational Research, doi:10.1016/j.ejor.2015.02.049, 2015. Earlier version.
  3. H. A Semidefinite Opimization Approach to the Target Visitation Problem. Opimization Letters, doi:10.1007/s11590-014-0824-9, 2014. Earlier version.
  4. H. Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. International Journal of Production Research, Vol. 52(5), pp. 1257-1268, 2014. Earlier version
  5. M. Chimani and H. Multi-Level Verticality Optimization: Concept, Strategies, and Drawing Scheme. Journal of Graph Algorithms and Applications,  Vol. 17(3), pp. 329-362, 2013. Earlier version.
  6. M. Chimani and H. Exact Approaches to Multi-Level Vertical Orderings. INFORMS Journal on Computing, Vol. 25(4),  pp. 611-624, 2013. Earlier version.
  7. H. and F. Rendl. A computational study and survey of methods for the single-row facility layout problem. Computational Optimization and Applications, Vol. 55(1), pp 1-20, 2013. Earlier version.
  8. H. and F. Rendl. Semidefinite Relaxations of Ordering Problems. Mathematical Programming, Vol. 140(1), pp 77-97, 2013. Earlier version.
  9. M. Chimani, H. , M. Jünger and P. Mutzel. An SDP approach to multi-level crossing minimization. Journal of Experimental Algorithmics, Vol. 17(3), Article 3.3, 2012. Earlier proceedings version.



Research Articles in Refereed Conference Proceedings


  1. M.F. Anjos, A. Fischer and HSolution Approaches for the Double-Row Equidistant Facility Layout Problem. In Operations Research Proceedings 2014, to appear, 2015.
  2. H. and M. F. Anjos. An Exact Approach for the Combined Cell Layout Problem. In Operations Research Proceedings 2012, pp. 275-281, 2013.
  3. H. A Semidefinite Optimization Approach to the Directed Circular Facility Layout Problem, in Proceedings of the 7th IFAC Conference on Manufacturing Modelling, Management, and Control, pp. 2033-2038, 2013.
  4. M. Chimani, H. , M. Jünger and P. Mutzel. An SDP approach to multi-level crossing minimization. In Proceedings of Algorithm Engineering & Experiments [ALENEX’2011], 2011. Online version.



Book Chapters and Lecture Notes


  1. H. and R. Neck. An algorithmic equilibrium solution for n- person dynamic Stackelberg difference games with open-loop information pattern. In: H. Dawid et al.: Computational Methods in Economic Dynamics, Springer Publishers,  pp 197-214, 2010.



Preprints and Work in Progress


  1. H. and M. F. Anjos. A Semidefinite Optimization Approach to Space-Free Multi-Row Facility Layout. Earlier version.
  2. H. and M. F. Anjos. An Exact Approach for the Combined Cell Layout Problem.
  3. H. A New Modelling Approach for Cyclic Layouts and its Practical Advantages. Earlier version.
  4. H. The Checkpoint Ordering Problem. Earlier version.
  5. H. and F. Rendl. An Infeasible Active Set Method with Step Size Control for Bound Constrained Convex Problems.
  6. M. F. Anjos, A. Fischer and H. . Solution Approaches for Equidistant Double- and Multi-Row Facility Layout Problems. Earlier version.
  7. H. New Semidefinite Programming Relaxations for the Linear Ordering and the Traveling Salesman Problem. Earlier version.



Technical Reports


  1. H. A Semidefinite Optimization Approach for the Parallel Ordering Problem.
  2. H. Differential Games: Egoism, Cooperation and Altruism.

PhD and Master Theses


  1. H. Semidefinite Optimization Approaches to Applications in Facility Layout and Logistics. PhD Thesis Economics, 2014. Online version.
  2. H. Semidefinite Approaches to Ordering Problems. PhD Thesis Mathematics, 2012. Online version.
  3. HThe Prices of Anarchy, Information and Cooperation. Master Thesis Business and Law, 2012. Online version.
  4. H. Algorithms for Convex Quadratic Programming. Master Thesis Mathematics, 2009. Online version.
  5. H. Discrete-Time Dynamic Noncooperative Game Theory. Master Thesis Economics, 2008. Online version.