Research Publications

Research Articles in International Journals

 

  1. M. F. Anjos, A. Fischer and H. Solution Approaches for Equidistant Double- and Multi-Row Facility Layout Problems. European Journal of Operational Research, accepted, 2018.
  2. H. and F. Rendl. An Infeasible Active Set Method with Combinatorial Line Search for Convex Quadratic Problems with Bound Constraints. Journal of Global Optimization, accepted, 2018.
  3. H. and M. F. Anjos. Improved exact approaches for row layout problems with departments of equal length. European Journal of Operational Research, Vol. 270(2), pp. 514-529, 2018.
  4. H. The Checkpoint Ordering Problem. Optimization, Vol. 66(10), pp. 1699-1712, 2017.
  5. A. Fischer and H. The Traveling Salesman Problem with Forbidden Neighbor-
  6. hoods on Grids. Journal of Combinatorial Optimization, Vol. 34(3), pp. 891–915, 2017.
  7. H. New Semidefinite Programming Relaxations for the Linear Ordering and the Traveling Salesman Problem. Discrete Applied Mathematics, Vol. 217(1), pp. 19–39, 2017.
  8. H. and F. Rendl. A Feasible Active Set Method for Strictly Convex Problems with Simple Bounds. SIAM Journal on Optimization, Vol. 25(3), pp. 1633-1659, 2015. Earlier version.
  9. H. and M. F. Anjos. Semidefinite Optimization Approaches to Multi-Row Facility Layout. European Journal of Operational Research, Vol. 245(1), pp. 46–61, 2015. 
  10. H. A Semidefinite Optimization Approach to the Target Visitation Problem. Optimization Letters, Vol. 9(8) , pp. 1703-1727, 2015. Earlier version.
  11. H. Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. International Journal of Production Research, Vol. 52(5), pp. 1257-1268, 2014. Earlier version.
  12. M. Chimani and H. Multi-Level Verticality Optimization: Concept, Strategies, and Drawing Scheme. Journal of Graph Algorithms and Applications, Vol. 17(3), pp. 329-362, 2013. Earlier version.
  13. M. Chimani and H. Exact Approaches to Multi-Level Vertical Orderings. INFORMS Journal on Computing, Vol. 25(4), pp. 611-624, 2013. Earlier version.
  14. H. and F. Rendl. A Computational Study and Survey of Methods for the Single-Row Facility Layout Problem. Computational Optimization and Applications, Vol. 55(1), pp 1-20, 2013. Earlier version.
  15. H. and F. Rendl. Semidefinite Relaxations of Ordering Problems. Mathematical Programming, Vol. 140(1), pp 77-97, 2013. Earlier version.
  16. M. Chimani, H. , M. Jünger and P. Mutzel. An SDP approach to multi-level crossing minimization. Journal of Experimental Algorithmics, 2012, Vol. 17(3), Article 3.3. Earlier proceedings version.
 

 

Research Articles in Refereed Conference Proceedings

 

  1. M. F. Anjos, H. and K. Maier. An Integer Linear Programming Approach for the Combined Cell Layout Problem. Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM2018), accepted, 2018.
  2. P. A.Bucur, K. Frick, and H. Correlation Analysis Between the Vibroacoustic Behavior of Steering Gear and Ball Nut Assemblies in the Automotive Industry. Rodrigues H. et al. (eds), EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization, pp. 1253–1262, 2019.
  3. H. and C. Truden. Efficient and Easy-to-Implement Mixed-Integer Linear Programs for the Traveling Salesperson Problem with Time Windows. Operations Research Procedia, 2018.
  4. H., K. Maier, J. Pöcher and C. Truden. On a New Modelling Approach for Circular Layouts and its Practical Advantages. Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM2017), 2017.
  5. A. Fischer, M. Firstein and H. Closed Almost Knight’s Tours on 2D and 3D Chessboards. Operations Research Proceedings 2017, 2017.
  6. A. Fischer, H. and A. Jellen. The Traveling Salesperson Problem with Forbidden Neighborhoods on Regular 3D Grids. Operations Research Proceedings 2017, 2017.
  7. H. and K. Maier. The Multiple Checkpoint Ordering Problem. Operations Research Proceedings 2017, 2017.
  8. H. A. Rendl and C. Truden. On the Slot Optimization Problem in On-Line Vehicle Routing. Transportation Research Procedia, Vol. 27, pp. 492-499, 2017.
  9. M. Aschinger, S. Applebee, A. Bucur, H. Edmonds, H. and K. Maier New Constraints and Features for the University Course Timetabling Problem. In: A. Fink, A. Fügenschuh, M. Geiger (eds), Operations Research Proceedings 2016, pp. 95-101, 2017.
  10. H. , K. Maier, J. Pöcher, A. Rendl and C. Truden. Solving an On-line Capacitated Vehicle Routing Problem with Structured Time Windows. In: A. Fink, A. Fügenschuh, M. Geiger (eds), Operations Research Proceedings 2016, pp. 127-132, 2017.
  11. A. Fischer, F. Fischer and H. A New Exact Approach to the Space-Free Double Row Layout Problem. Operations Research Proceedings 2015, pp. 125 – 130, 2017.
  12. M. F. Anjos, A. Fischer and H. Solution Approaches for the Double-Row Equidistant Facility Layout Problem. Operations Research Proceedings 2014, pp. 17–23, 2016.
  13. H. and M. F. Anjos. An Exact Approach for the Combined Cell Layout Problem. Operations Research Proceedings 2012, pp. 275 – 281, 2013.
  14. H. A Semidefinite Optimization Approach to the Directed Circular Facility Layout Problem. Proceedings of the 7th IFAC Conference on Manufacturing Modelling, Management, and Control, pp. 2033 – 2038, 2013.
  15. M. Chimani, H. M. Jünger and P. Mutzel. An SDP approach to multi-level crossing minimization. Proceedings of Algorithm Engineering & Experiments [ALENEX’2011], 2011.
 

 

Book Chapters and Lecture Notes

 

  1. H. and R. Neck. An algorithmic equilibrium solution for n- person dynamic Stackelberg difference games with open-loop information patternIn: H. Dawid et al.: Computational Methods in Economic Dynamics, Springer Publishers,  pp 197-214, 2010.

 

 

 

Preprints and Work in Progress

 

  1. A. Fischer, F. Fischer and H. New Exact Approaches to Row Layout Problems. Mathematical Programming C, in revision, 2018.
  2. H. A comparison of global optimization approaches for row facility layout problems. Optimization, in revision, 2017.
  3. H. and M. F. Anjos. An Exact Approach for the Combined Cell Layout Problem. Journal version of the above proceedings paper.
  4. H. K. Maier, J. Pöcher, A. Rendl and C. Truden. Solving an On-line Capacitated Vehicle Routing Problem with Structured Time Windows. Journal version of the proceedings paper.
  5. H., J. Júdic and F. Rendl. A Recursive Semi-Smooth Newton Method for Linear Complementarity Problems.
  6. A. Fischer and H. New Combinatorial Properties of and Models for Row Layout Problems.
  7. H. and K. Maier. A Two-Stage ILP Approach Incorporating New Constraints and Features for the University Course Timetabling Problem.
  8. P. A. Bucur and H. A Reinforcement Learning Approach for the Dynamic Container Relocation Problem.

 

 

Technical Reports

 

  1. H. A Semidefinite Optimization Approach for the Parallel Ordering Problem.
  2. H. Differential Games: Egoism, Cooperation and Altruism.
 

PhD and Master Theses

 

  1. H. Semidefinite Optimization Approaches to Applications in Facility Layout and LogisticsPhD Thesis Economics, 2014. Online version.
  2. H. Semidefinite Approaches to Ordering ProblemsPhD Thesis Mathematics, 2012. Online version.
  3. H. The Prices of Anarchy, Information and CooperationMaster Thesis Business and Law, 2012. Online version.
  4. H. Algorithms for Convex Quadratic ProgrammingMaster Thesis Mathematics, 2009. Online version.
  5. H. Discrete-Time Dynamic Noncooperative Game TheoryMaster Thesis Economics, 2008. Online version.